Colocalization of mu-opioid receptors and activated G-proteins in rat cingulate cortex.

نویسندگان

  • L J Vogt
  • L J Sim-Selley
  • S R Childers
  • R G Wiley
  • B A Vogt
چکیده

Anterior cingulate cortex (ACC) has a role in pain processing, however, little is known about opioid system organization and actions. This rodent study defines opioid architecture in the perigenual and midcingulate divisions of ACC, relates mu-opioid receptor binding and G-protein activation, and localizes such binding to afferent axons with knife-cut lesions and specifically to noradrenergic terminals with immunotoxin lesions (anti-dopamine beta-hydroxylase-saporin; anti-DBH-saporin). [(3)H]Tyr-D-AlaGly-MePhe-Gly-ol (DAMGO) binding was highest in perigenual areas 32 and 24 with a peak in layer I. Midcingulate area 24' and posterior cingulate area 29 had overall lower binding in each layer. In contrast, DAMGO-stimulated [(35)S]guanosine-5'-O-(gamma-thio)-triphosphate (GTPgammaS) binding in area 24' was similar to that in area 24, whereas area 29 had low and homogeneous binding. Undercut lesions reduced [(3)H]DAMGO binding in all layers with the greatest loss in layer I (-65%), whereas DAMGO-stimulated [(35)S]GTPgammaS binding losses occurred in only layers I-III. Anti-DBH-saporin reduced [(3)H]DAMGO binding in layer I of area 24; DAMGO-stimulated [(35)S]GTPgammaS binding was unchanged in areas 24' and 29. Correlation analysis of receptor and G-protein activation before and after undercut lesions suggested there were a greater number of DAMGO receptor sites for each G-protein on axons, than on somata and proximal dendrites. Finally, perigenual and midcingulate cortices have different opioid architectures due to a higher proportion of mu-opioid receptors expressed by afferent axons in areas 24 and 32.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic heroin self-administration desensitizes mu opioid receptor-activated G-proteins in specific regions of rat brain.

In previous studies from our laboratory, chronic noncontingent morphine administration decreased mu opioid receptor-activated G-proteins in specific brainstem nuclei. In the present study, mu opioid receptor binding and receptor-activated G-proteins were examined after chronic heroin self-administration. Rats were trained to self-administer intravenous heroin for up to 39 d, achieving heroin in...

متن کامل

Mu opioid receptor coupling to Gi/o proteins increases during postnatal development in rat brain.

Mu opioid receptors are densely expressed within rat striatum and are concentrated in anatomically discrete patches called striosomes. The density of striosomal mu receptors remains relatively constant during postnatal development, but little is known about their functional maturation. We examined the extent of G protein coupling by mu opioid receptors in rat brain during development, focusing ...

متن کامل

Morphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex

Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels i...

متن کامل

ERK1/2 activation in rat ventral tegmental area by the mu-opioid agonist fentanyl: an in vitro study.

Opioid receptors in the ventral tegmental area, predominantly the mu-opioid receptors, have been suggested to modulate reinforcement sensitivity for both opioid and non-opioid drugs of abuse. The present study was conducted to study signal transduction proteins, which may mediate the functioning of mu-opioid receptors in the neurons of the ventral tegmental area. Therefore, brain slices of the ...

متن کامل

Involvement of Mu Opioid Receptor Signaling in The Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis

Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamineinduced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 299 3  شماره 

صفحات  -

تاریخ انتشار 2001